Amplitud de ondas informatica

DIAGRAMA  DE  BLOQUES  DE UN SISTEMA DE COMUNICACIÓN

Consiste de tres secciones primarias: un transmisor, un medio de transmisión y un receptor. El transmisor convierte la información original de la fuente a una forma más adecuada para la transmisión, el medio de transmisión proporciona un medio de conexión entre el transmisor y el receptor (tal como un conductor metálico, una fibra óptica o espacio libre), y el receptor convierte la información recibida a su forma original y la transfiere a su destino. La información original puede originarse de una variedad de fuentes diferentes y ser de forma analógica o digital.

MODOS Y MEDIOS DE TRANSMISIÓN

El medio de transmisión constituye el canal que permite la transmisión de información entre dos terminales en un  sistema de transmisión. Las transmisiones se realizan habitualmente empleando ondas electromagnéticas que se propagan a través del canal .
 Dependiendo de la forma de conducir la señal a través del medio, los medios de transmisión se pueden clasificar en dos grandes grupos, medios de transmisión guiados y medios de transmisión no guiados.
 Los medios de transmisión guiados están constituidos por un cable que se encarga de la conducción (o guiado) de las señales desde un extremo al otro.

Las principales características de los medios guiados son el tipo de conductor utilizado, la velocidad máxima de transmisión, las distancias máximas que puede ofrecer entre repetidores, la inmunidad frente a interferencias electromagnéticas, la facilidad de instalación y la capacidad de soportar diferentes tecnologías de nivel de enlace.



ESPECTRO DE FRECUENCIA

es una medida de la distribución de amplitudes de cada frecuencia. También se llama espectro de frecuencia al gráfico de intensidad frente a frecuencia de una onda particular.

El espectro de frecuencias o descomposición espectral de frecuencias puede aplicarse a cualquier concepto asociado con frecuencia o movimientos ondulatorios como son los colores, las notas musicales, las ondas electromagnéticas de radio o TV e incluso la rotación regular de la tierra.

ESPECTRO LUMINOSO

Una fuente de luz puede tener muchos colores mezclados en diferentes cantidades (intensidades). Un arcoíris, o un prisma transparente, deflacta cada fotón según su frecuencia en un ángulo ligeramente diferente. Eso nos permite ver cada componente de la luz inicial por separado. Un gráfico de la intensidad de cada color deflactado por un prisma que muestre la cantidad de cada color es el espectro de frecuencia de la luz o espectro luminoso. Cuando todas las frecuencias visibles están presentes por igual, el efecto es el «color» blanco, y el espectro de frecuencias es uniforme, lo que se representa por una línea plana. De hecho cualquier espectro de frecuencia que consista en una línea plana se llama blanco de ahí que hablemos no solo de «color blanco» sino también de «ruido blanco».



ESPECTRO SONORO

una fuente de ondas sonoras puede ser una superposición de frecuencias diferentes. Cada frecuencia estimula una parte diferente de nuestra cóclea (caracol del oído). Cuando escuchamos una onda sonora con una sola frecuencia predominante escuchamos una nota. Pero en cambio un silbido cualquiera o un golpe repentino que estimule todos los receptores, diremos que contiene frecuencias dentro de todo el rango audible. Muchas cosas en nuestro entorno que calificamos como ruido frecuentemente contienen frecuencias de todo el rango audible. Así cuando un espectro de frecuencia de un sonido, o espectro sonoro. Cuando este espectro viene dada por una línea plana, decimos que el sonido asociado es ruido blanco

ESPECTRO ELECTROMAGNÉTICO

Cada estación emisora de radio o Tv es una fuente de ondas electromagnéticas que emite ondas cercanas a una frecuencia dada. En general las frecuencias se concentrará en una banda alrededor de la frecuencia nominal de la estación, a esta banda es a lo que llamamos canal. Una antena receptora de radio condensa diferentes ondas electromagnéticas en una única señal de amplitud de voltaje, que puede ser a su vez decodificada nuevamente en una señal de amplitud sonora, que es el sonido que oímos al encender la radio. El sintonizador de la radio selecciona el canal, de un modo similar a como nuestros receptores de la cóclea seleccionan una determinada nota. Algunos canales son débiles y otros fuertes. Si hacemos un gráfico de la intensidad del canal respecto a su frecuencia obtenemos el espectro electromagnético de la señal receptora.

RUIDO Y NORMATIVIDAD

El control del ruido está formado por aquel conjunto de medidas (tanto a nivel  normativo como a nivel de ingeniería y su aplicación) que tienen como objetivo general asegurar unos niveles de ruido aceptables según la legislación vigente en cualquiera de los ámbitos de la sociedad.

  1. Ámbito Arquitectónico: sirve de guía básica en este ámbito y trata de definir unas condiciones técnicas razonables dentro del ámbito de la arquitectura.
  2. Ámbito Laboral: En casos especiales en que el nivel de ruido supere estos niveles se especifican que medidas de protección y/o correctoras se deben poner en marcha

Ámbito de aplicación de la normativa vigente: verifica que la normativa vigente se está cumpliendo en los diferentes ámbitos donde aplica.



ANALOGICA:AMPLITUD, FRECUENCIA Y FASE

es un tipo de señal generada por algún tipo de fenómeno electromagnético y que es representable por una función matemática continua en la que es variable su amplitud y periodo(representando un dato de información) en función del tiempo. Algunas magnitudes físicas comúnmente portadoras de una señal de este tipo son eléctricas como la intensidad, la tensión y la potencia, pero también pueden ser hidráulicas como la presión, térmicas como la temperatura, mecánicas, etc. La magnitud  también puede ser cualquier objeto medible como los beneficios o pérdidas de un negocio.

En la naturaleza, el conjunto de señales que percibimos son analógicas, así la luz, el sonido, la energía  etc., son señales que tienen una variación continua. Incluso la descomposición de la luz en el arco iris vemos como se realiza de una forma suave y continúa.

Una onda senoidal es una señal analógica de una sola frecuencia. Los voltajes de la voz y del video son señales analógicas que varían de acuerdo con el  sonido o variaciones de la luz que corresponden a la información que se está transmitiendo.



DIGITAL: TEOREMA DE SHANNON

es una aplicación del teorema de codificación para canales con ruido. Un caso muy frecuente es el de un canal de comunicación analógico continuo en el tiempo que presenta un ruido gausiano.

El teorema establece la capacidad del canal de Shannon, una cota superior que establece la máxima cantidad de datos digitales que pueden ser transmitidos sin error (esto es, información sobre dicho enlace de comunicaciones con un ancho de banda específico y que está sometido a la presencia de la interferencia del ruido.

En las hipótesis de partida, para la correcta aplicación del teorema, se asume una limitación en la potencia de la señal y, además, que el proceso del ruido gausiano es caracterizado por una potencia conocida o una densidad espectral de potencia.

PULSOS: PAM, PPM, PWM, ASK, PSK

PAM: Consiste en cambiar la amplitud de una señal, de frecuencia fija, en función del símbolo a transmitir. Esto puede conseguirse con un amplificador de ganancia variable o seleccionando la señal de un banco de osciladores.

PPM: es una unidad empleada para medir el tempo en música. Equivale al número de pulsaciones que caben en un minuto.
PWM: de una señal o fuente de energía es una técnica en la que se modifica el ciclo de trabajo de una señal periódica (una senoidal o una cuadrada, por ejemplo), ya sea para transmitir información a través de un canal de comunicaciones o para controlar la cantidad de energía que se envía a una carga.

ASK: es una forma de modulación en la cual se representan los datos digitales como variaciones de amplitud de la onda portadora.

PSK: es una forma de modulación angular que consiste en hacer variar la fase de la portadora entre un número de valores discretos

FRECUENCIA, TIEMPO Y CODIFICACIÓN DE PULSOS

En la modulación de pulsos, lo que se varía es alguno de los parámetros de un tren de pulsos uniformes, bien sea su amplitud, duración o posición. En este tipo de modulación se distinguen dos clases: modulación analógica de pulsos, en que la información se transmite básicamente en forma analógica, pero la transmisión tiene lugar a intervalos discretos de tiempo y modulación digital de pulsos en que la señal de información es discreta, tanto en amplitud como en tiempo, permitiendo la transmisión digital como una secuencia de pulsos codificados, todos de la misma amplitud. Este tipo de transmisión no tiene contraparte en los sistemas de onda continua. En la modulación digital, la señal de información es un flujo binario compuesto por señales binarias, es decir cuyos niveles de voltaje sólo son dos y corresponden a ceros y unos. En la modulación analógica de pulsos,

la señal no necesariamente es de dos niveles, sino que el nivel de la señal puede

tener cualquier valor real, si bien la señal es discreta, en el sentido de que se presenta

a intervalos definidos de tiempo, con amplitudes, frecuencias, o anchos de

pulso variables. Los esquemas de modulación de pulsos son varios, los más importantes:

• Modulación por amplitud de pulsos (PAM)

• Modulación por duración o anchura de pulsos (PWM o PDM)

• Modulación por posición de pulsos (PPM)

• Modulación por codificación de pulsos (PCM)

TIPOS DE ANTENAS

Una antena es un dispositivo formado por un conjunto de conductores que, unido a un generador, permite la emisión de ondas de radio frecuencia, o que, conectado a una impedancia, sirve para captar las ondas emitidas por una fuente lejana para este fin existen diferentes tipos:

  1. Antena colectiva:

Antena receptora que, mediante la conveniente amplificación y el uso de distribuidores, permite su utilización por diversos usuarios.

  1. Antena de cuadro:

Antena de escasa sensibilidad, formada por una bobina de una o varias espiras arrolladas en un cuadro, cuyo funcionamiento bidireccional la hace útil en radiogoniometría.

  1. Antena de reflector o parabólica:

Antena provista de un reflector metálico, de forma parabólica, esférica o de bocina, que limita las radiaciones a un cierto espacio, concentrando la potencia de las ondas; se utiliza especialmente para la transmisión y recepción vía satélite.

  1. Antena lineal:

La que está constituida por un conductor rectilíneo, generalmente en posición vertical.

  1. Antena multi banda:

La que permite la recepción de ondas cortas en una amplitud de banda que abarca muy diversas frecuencias.

  1. Dipolo de Media Onda

El dipolo de media onda lineal o dipolo simple es una de las antenas más ampliamente utilizadas en frecuencias arriba de 2MHz. En frecuencias abajo de 2 MHz, la longitud física de una antena de media longitud de onda es prohibitiva. Al dipolo de media onda se le refiere por lo general como antena de Hertz .

Una antena de Hertz es una antena resonante. O Sea, es un múltiplo de un cuarto de longitud de onda de largo y de circuito abierto en el extremo más lejano. Las ondas estacionarias de voltaje y de corriente existen a lo largo de una antena resonante.

  1. Antena Yagi:

Antena constituida por varios elementos paralelos y coplanarios, directores, activos y reflectores, utilizada ampliamente en la recepción de señales televisivas. Los elementos directores dirigen el campo eléctrico, los activos radian el campo y los reflectores lo reflejan.

PATRONES DE RADIACIÓN

Los patrones o diagramas de radiación describen la intensidad relativa del campo radiado en varias direcciones desde la antena a una distancia constante. El patrón de radiación es también de recepción, porque describe las propiedades de recepción de la antena. El patrón de radiación es tridimensional, pero generalmente las mediciones de los mismos son una porción bi-dimensional del patrón, en el plano horizontal o vertical. Estas mediciones son presentadas en coordenadas rectangulares o en coordenadas polares. La siguiente figura muestra el diagrama de radiación en coordenadas rectangulares de una antena Yagi de diez elementos. El detalle es bueno pero se hace difícil visualizar el comportamiento de la antena en diferentes direcciones.

GANANCIA Y POLARIZACIÓN

GANANCIA: La ganancia no es una cantidad que pueda ser definida en términos de una cantidad física como vatios u ohmios, es un cociente sin dimensión. La ganancia se expresa en referencia a una antena estándar. Las dos referencias más comunes son la antena isotrópica y la antena dipolo resonante de media longitud de onda. La antena isotrópica irradia en todas direcciones con la misma intensidad. En la realidad esta antena no existe, pero provee un patrón teórico útil y sencillo con el que comparar las antenas reales. Cualquier antena real va a irradiar más energía en algunas direcciones que en otras. Puesto que las antenas no crean energía, la potencia total irradiada es la misma que una antena isotrópica. Toda energía adicional radiada en las direcciones favorecidas es compensada por menos energía radiada en las otras direcciones.

La ganancia de una antena en una dirección dada es la cantidad de energía radiada en esa dirección comparada con la energía que podría radiar una antena isotrópica en la misma dirección alimentada con la misma potencia. Generalmente estamos interesados en la ganancia máxima, que es aquella en la dirección hacia la cual la antena está radiando la mayor potencia. Una ganancia de antena de 3dB comparada con una isotrópica debería ser escrita como 3dBi. El dipolo resonante de media longitud de onda puede ser un estándar útil a la hora de compararlo con otras antenas a una frecuencia, o sobre una banda estrecha de frecuencias. Para comparar el dipolo con una antena sobre un rango de frecuencias se requiere de un número de dipolos de diferentes longitudes. La ganancia de una antena comparada con un dipolo debería ser escrita como 3dBd.

La polarización se define como la orientación del campo eléctrico de una onda electromagnética. En general la polarización se describe por una elipse. Dos casos especiales de la polarización elíptica son la polarización lineal y la polarización circular. La polarización inicial de una onda de radio es determinada por la antena.

Con la polarización lineal, el vector del campo eléctrico se mantiene en el mismo plano todo el tiempo. El campo eléctrico puede dejar la antena en una orientación vertical, horizontal, o en algún ángulo entre los dos. La radiación polarizada verticalmente se ve ligeramente menos afectada por las reflexiones en el camino de transmisión. Las antenas omnidireccionales siempre tienen una polarización vertical. Con la polarización horizontal, tales reflexiones causan variaciones en la intensidad de la señal recibida. Las antenas horizontales tienen menos probabilidad de captar interferencias generadas por el hombre, normalmente polarizadas verticalmente.